Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534457

ABSTRACT

This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.

2.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439081

ABSTRACT

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Subject(s)
Aedes , Mosquito Vectors , Humans , Animals , Genotype , Mosquito Vectors/genetics , Heterozygote , Aedes/genetics
3.
Insect Biochem Mol Biol ; 162: 104015, 2023 11.
Article in English | MEDLINE | ID: mdl-37797713

ABSTRACT

We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD+-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes. Transcriptional and protein profiles of AaSirt2, analyzed by qPCR and western blots, indicated that the AaSirt2 is differentially modulated in response to sugar or blood feeding in mosquito tissues dissected at different times during the first gonotrophic cycle. We also found that AaSirt2 is localized in both cytosolic and mitochondrial cellular compartments of fat body and thorax. Multiple lysine-acetylated proteins were detected by western blotting in both cellular compartments. Furthermore, western blotting of immunoprecipitated proteins provided evidence that AaPK is lysine-acetylated and bound with AaSirt2 in the cytosolic fractions of fat body and thorax from non-starved and starved females. In correlation with these results, we also discovered that RNAi-mediated knockdown of AaSirt2 in the fat body of starved females significantly decreased AaPK protein abundance. Notably, survivorship of AaSirt2-deficient females maintained under four different nutritional regimens was not significantly affected. Taken together, our data reveal that AaPK is post-translationally regulated by AaSirt2.


Subject(s)
Aedes , Female , Animals , Aedes/metabolism , Pyruvate Kinase/metabolism , Sirtuin 2/metabolism , Lysine/metabolism , RNA Interference
4.
Front Bioeng Biotechnol ; 11: 1103748, 2023.
Article in English | MEDLINE | ID: mdl-36845184

ABSTRACT

Mosquitoes carry a number of deadly pathogens that are transmitted while feeding on blood through the skin, and studying mosquito feeding behavior could elucidate countermeasures to mitigate biting. Although this type of research has existed for decades, there has yet to be a compelling example of a controlled environment to test the impact of multiple variables on mosquito feeding behavior. In this study, we leveraged uniformly bioprinted vascularized skin mimics to create a mosquito feeding platform with independently tunable feeding sites. Our platform allows us to observe mosquito feeding behavior and collect video data for 30-45 min. We maximized throughput by developing a highly accurate computer vision model (mean average precision: 92.5%) that automatically processes videos and increases measurement objectivity. This model enables assessment of critical factors such as feeding and activity around feeding sites, and we used it to evaluate the repellent effect of DEET and oil of lemon eucalyptus-based repellents. We validated that both repellents effectively repel mosquitoes in laboratory settings (0% feeding in experimental groups, 13.8% feeding in control group, p < 0.0001), suggesting our platform's use as a repellent screening assay in the future. The platform is scalable, compact, and reduces dependence on vertebrate hosts in mosquito research.

5.
J Med Entomol ; 60(2): 392-400, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36683424

ABSTRACT

The transmission of Aedes-borne viruses is on the rise globally. Their mosquito vectors, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Ae. albopictus (Skuse, Diptera: Culicidae), are focally abundant in the Southern United States. Mosquito surveillance is an important component of a mosquito control program. However, there is a lack of long-term surveillance data and an incomplete understanding of the factors influencing vector populations in the Southern United States. Our surveillance program monitored Ae. aegypti and Ae. albopictus oviposition intensity in the New Orleans area using ovicups in a total of 75 sites from 2009 to 2016. We found both Aedes spp. throughout the study period and sites. The average number of Ae. aegypti and Ae. albopictus hatched from collected eggs per site per week was 34.1 (SD = 57.7) and 29.0 (SD = 46.5), respectively. Based on current literature, we formed multiple hypotheses on how environmental variables influence Aedes oviposition intensity, and constructed Generalized Linear Mixed Effect models with a negative binomial distribution and an autocorrelation structure to test these hypotheses. We found significant associations between housing unit density and Ae. aegypti and Ae. albopictus oviposition intensity, and between median household income and Ae. albopictus oviposition intensity. Temperature, relative humidity, and accumulated rainfall had either a lagged or an immediate significant association with oviposition. This study provides the first long-term record of Aedes spp. distribution in the New Orleans area, and sheds light on factors associated with their oviposition activity. This information is vital for the control of potential Aedes-borne virus transmission in this area.


Subject(s)
Aedes , Female , Animals , Oviposition , New Orleans , Mosquito Vectors , Temperature
6.
PLoS One ; 15(5): e0233309, 2020.
Article in English | MEDLINE | ID: mdl-32469909

ABSTRACT

Aedes aegypti and Aedes albopictus are both vectors of Zika virus and both are endemic to the New Orleans Metropolitan area. Fortunately, to date there has been no known autochthonous transmission of Zika virus in New Orleans. No studies of the vector competence of local populations of Ae. aegypti and Ae. albopictus for Zika virus transmission have been conducted. To determine if New Orleans Ae. aegypti and Ae. albopictus mosquitoes are competent for Zika virus, mosquitoes were reared to generation F3 from eggs collected in New Orleans during the 2018 mosquito season. Adults were fed an infectious blood meal and kept for 15 days in an environmental chamber. Transmission assays were conducted at 4, 10, and 15 days post exposure and RT-PCR was run on bodies and saliva to detect the presence of Zika virus RNA. We observed remarkably low susceptibility of both Ae. aegypti and Ae. albopictus from New Orleans to a Zika strain from Panama after oral challenge. These results suggest a limited risk of Zika virus transmission should it be introduced to the New Orleans area, and may partially explain why no transmission was detected in Louisiana during the 2016 epidemic in the Americas, despite multiple known travel associated introductions to New Orleans. Despite these results these mosquito populations are known to be competent vectors for some other mosquito-borne viruses and control measures should not be relaxed.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Viral Load , Virus Replication , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Zika Virus/isolation & purification , Animals , Female , Humans , Male , New Orleans/epidemiology , Serologic Tests , Zika Virus/classification , Zika Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...